Higgs interference effects in top-quark pair production in the 1HSM

Alexander Lind

with Andrea Banfi, Nikolas Kauer, Jonas Lindert, and Ryan Wood

2309.16759 [hep-ph]

LNF Theory Seminar Laboratori Nazionali di Frascati 4 June 2024

 BSc, MSc Niels Bohr Institute, University of Copenhagen, Denmark PhD University of Sussex, STFC, UK
 Postdoc Subatech, CNRS/IN2P3, France

Research interests:

- Collider phenomenology
- Higgs physics, BSM
- Jets
- Monte Carlo event generator development

Higgs sector of the SM is still not well-understood

Collider physics is in a precision era

Theoretical precision predictions for Higgs extensions

Search for New Physics:

Distinguishing effects of heavy resonance from continuum background

"Bump hunting"

Invariant mass spectrum:

"Bump hunting"

Invariant mass spectrum:

Alternative to "bump hunting"

Invariant mass spectrum:

Alternative to "bump hunting"

Invariant mass spectrum:

Process of interest

 $pp (\rightarrow \{h_1, h_2\}) \rightarrow t\bar{t} + X$ Leading-order contributions:

Alexander Lind

The 1-Higgs Singlet Model

Add a real singlet scalar field

Potential after symmetry breaking: $V = \lambda \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right)^2 + \frac{1}{2} M^2 s^2 + \lambda_1 s^4 + \lambda_2 s^2 \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) + \mu_1 s^3 + \mu_2 s \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right)$

Mixing: $h_1 = H \cos \theta - s \sin \theta$ $h_2 = H \sin \theta + s \cos \theta$

Fixed parameters: $M_{h_1} = 125 \text{ GeV}$

125 GeV,
$$\mu_1 = \lambda_1 = \lambda_2 = 0$$

Free parameters: M_{h_2} , θ , with 8 benchmark points:

M_{h_2} [GeV]	700	1000	1500	3000
$\theta = \theta_1$	$\pi/15$	$\pi/15$	$\pi/22$	$\pi/45$
	pprox 0.21	pprox 0.21	≈ 0.14	pprox 0.07
$\theta = \theta_2$	$\pi/8$	$\pi/8$	$\pi/12$	$\pi/24$
	≈ 0.39	≈ 0.39	≈ 0.26	≈ 0.13

Large datasets LHC Run 2: $\mathcal{L} \approx 139 \text{ fb}^{-1}$ LHC Run 3: $\mathcal{L} \approx 300 \text{ fb}^{-1}$ HL-LHC: $\mathcal{L} \approx 3000 \text{ fb}^{-1}$

Lepton colliders (FCC-ee)

Large reduction in experimental uncertainties Electron/muon uncertainties: permille level JES: sub-percent level B-tagging uncertainty: sub-percent level + Machine Learning

 \Rightarrow Need for more precision in theory predictions and event generators

Precision: NLO QCD

$$\sigma_{\mathsf{LO}} = \int_{m} \mathrm{d}\sigma_{\mathsf{B}}$$

$$\sigma_{\mathsf{NLO}} = \sigma_{\mathsf{LO}} + \int_{m} \mathrm{d}\sigma_{\mathsf{V}} + \int_{m+1} \mathrm{d}\sigma_{\mathsf{R}}$$

NLO particularly important for Higgs production

$$\sigma_{\text{LO}}(pp \to H + X) = 14.541(7) \text{ pb}$$

 $\sigma_{\text{NLO}}(pp \to H + X) = 35.11(2) \text{ pb}$

Infrared (soft/collinear) divergences \Rightarrow Subtraction of dipoles

$$\sigma_{\mathsf{NLO}} = \sigma_{\mathsf{LO}} + \int_{m} \left[\mathrm{d}\sigma_{\mathsf{V}} + \mathrm{d}\sigma_{\mathsf{B}} \otimes \mathbf{I} \right] + \int_{m+1} \left[\mathrm{d}\sigma_{\mathsf{R}} - \sum_{\mathsf{dipoles}} \mathrm{d}\sigma_{\mathsf{B}} \otimes \mathbf{V} \right]$$

Even NNLO can give sizable corrections but 2-loop is highly non-trivial

Interference effects also very important — and has large K-factors!

Alexander Lind

NLO QCD Corrections to the Interference

Non-Factorisable Corrections

Non-factorisable two-loop virtual corrections

Non-zero for a (heavy) Higgs of finite width

Three different masses in internal propagators \Rightarrow Beyond today's loop technology

Could be calculated by expansions in $\frac{\Gamma_{h_i}}{M_{h_i}}$

Non-Factorisable Corrections

IR divergent non-factorisable real contribution

IR divergent non-factorisable virtual contribution

Non-Factorisable Corrections

However, in the soft limit:

HELAC+OpenLoops

Gap in current MC landscape: Loop-induced \times tree interference at NLO \Rightarrow Need to develop our own NLO Monte Carlo framework

But no need to reinvent the wheel

Helac-Dipoles
 Dipole subtraction

Kaleu
 Phase space generation

OpenLoops Tree-level and loop amplitudes

Modify OpenLoops with:

- BSM extension
- Interface to get colour correlated helicity amplitudes

$$\mathrm{d}\sigma_{\mathsf{B}} \sim \langle \mathcal{M}_{\mathsf{B}} | \mathcal{M}_{\mathsf{B}}
angle \qquad \mathcal{D}_{ij,k} \sim \langle \mathcal{M}_{\mathsf{B}} | \frac{\mathbf{T}_{k} \cdot \mathbf{T}_{ij}}{\mathbf{T}_{ij}^{2}} \mathbf{V}_{ij,k} | \mathcal{M}_{\mathsf{B}}
angle$$

• One- and two-loop $gg \rightarrow H$ form factors (see next slides)

Form Factors for $gg \rightarrow H$

Coupling of a Higgs doublet to two on-shell gluons

$$\mathcal{V}^{\mu\nu,ab}(q_1,q_2) = \frac{\alpha_s}{4\pi v} F \,\delta^{ab} \left((q_1 \cdot q_2) \,g^{\mu\nu} - q_1^{\nu} \,q_2^{\mu} \right)$$

Form factor F can be represented as a series expansion in powers of α_s

$$F = F_1 + \frac{\alpha_s}{2\pi}F_2 + \mathcal{O}(\alpha_s^2)$$

Davies, Herren, Steinhauser [1911.10214] The one-loop form factor is

$$F_1 = -\sum_q \frac{2}{\tau_q^2} \left[\tau_q + \frac{1}{4} (1 - \tau_q) \ln^2 x_q \right]$$

Harlander, Kant [hep-ph/0509189]

Form Factors for $gg \rightarrow H$

The two-loop form factor is

$$F_{2} = \left(\frac{4\pi\mu_{R}^{2}}{-2(q_{1}\cdot q_{2}) - i0}\right)^{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left\{ -\left(\frac{C_{A}}{\epsilon^{2}} + \frac{\beta_{0}}{\epsilon} + \beta_{0}\ln\left(\frac{2(q_{1}\cdot q_{2})}{\mu_{R}^{2}}\right)\right) F_{1} + 2\sum_{q} \left[C_{F}\left(\mathcal{F}_{1/2}^{2l,a}(x_{q}) + \frac{4}{3}\mathcal{F}_{1/2}^{2l,b}(x_{q})\right) + C_{A}\mathcal{G}_{1/2}^{2l}(x_{q})\right]\right\}$$

Aglietti, Bonciani, Degrassi, Vicini [hep-ph/0611266]

Results: Integrated Cross Sections

NLO predictions with stable tops

QCD background: $|\mathcal{M}_{QCD}|^2$ Higgs signal: $|\mathcal{M}_{h_1}|^2 + |\mathcal{M}_{h_2}|^2 + 2 \operatorname{Re} \left(\mathcal{M}_{h_1}^* \mathcal{M}_{h_2} \right)$ Higgs–QCD interference: $2 \operatorname{Re} \left(\left(\mathcal{M}_{h_1}^* + \mathcal{M}_{h_2}^* \right) \mathcal{M}_{QCD} \right)$

 $pp (\rightarrow \{h_1\}) \rightarrow t\bar{t} + X$ in the SM

QCD background		Higgs signal		Higgs-QCD Interference	
$\sigma_{ m NLO}^{ m QCD}$ [pb]	$K^{\rm QCD}$	$\sigma_{ m NLO}^{ m Higgs}$ [pb]	$K^{ m Higgs}$	$\sigma_{ m NLO}^{ m interf}$ [pb]	K^{interf}
675.23(4)	1.5965(1)	0.030971(3)	1.6512(2)	-1.4625(1)	2.0101(2)

Ansatz from Hespel, Maltoni, Vryonidou, [1606.04149]:

 $\sigma_{\rm NLO}^{\rm interf} = \sqrt{K^{\rm Higgs} \cdot K^{\rm QCD}} \, \sigma_{\rm LO}^{\rm interf}$

This ansatz yields $K_{\text{estimate}}^{\text{interf}} = \sqrt{K^{\text{Higgs}} \cdot K^{\text{QCD}}} = 1.62 \text{ vs. ours } K^{\text{interf}} = 2.01$

Results: Integrated Cross Sections

Same story for our considered BSM model

$pp (\rightarrow \{h_1, h_2\}) \rightarrow t\bar{t} + X$ in the 1HSM						
		Higgs signal $\sigma_{ m NLO}^{ m Higgs}$ [pb] $K^{ m Higgs}$		Higgs–QCD interference		
	M_{h_2} [GeV]			$\sigma_{ m NLO}^{ m interf}$ [pb]	K^{interf}	
$ heta_1$	700	0.029108(2)	1.6234(2)	-1.388(8)	1.99(2)	
	1000	0.027334(2)	1.6459(2)	-1.3924(2)	2.0151(2)	
	1500	0.029932(3)	1.6745(2)	-1.4369(2)	2.0194(2)	
	3000	0.030933(3)	1.6661(2)	-1.4781(2)	2.0414(2)	
θ_2	700	0.027231(2)	1.5689(2)	-1.186(8)	1.88(2)	
	1000	0.020114(2)	1.6442(2)	-1.21053(9)	1.9867(2)	
	1500	0.026519(2)	1.6617(2)	-1.34853(9)	1.9958(2)	
	3000	0.029772(2)	1.6452(2)	-1.4365(2)	2.0097(2)	

 $M_{t\bar{t}}$ distribution for benchmark points with $\theta = \theta_1$

 $M_{t\bar{t}}$ distribution for benchmark points with $\theta = \theta_2$

NLO vs. LO

Zoomed in at the invariant mass windows

Estimation of theoretical uncertainties:

 7-point scale variation

20–30%

Results: Sensitivity Estimates to BSM Effects

Naive estimate for the significance from Poisson statistics

$$\frac{|S|}{\sqrt{B}} = \sqrt{\mathcal{L}} \frac{|\sigma_S|}{\sqrt{\sigma_B}}$$

 $\frac{|S|}{\sqrt{B}} > 2$

Excludable if

Run 2: $\mathcal{L} = 139 \text{ fb}^{-1}$ Run 3: $\mathcal{L} \approx 300 \text{ fb}^{-1}$ HL-LHC: $\mathcal{L} \approx 3000 \text{ fb}^{-1}$

		Invariant	Excludable		
	M_{h_2} [GeV]	mass window	Run 2	Run 3	HL-LHC
	700	600–790 GeV	\checkmark	\checkmark	\checkmark
$ heta_1$	1000	900–1115 GeV	-	\checkmark	\checkmark
	1500	1200–1600 GeV	_	-	_
	700	530–870 GeV	\checkmark	\checkmark	\checkmark
$ heta_2$	1000	830–1200 GeV	\checkmark	\checkmark	\checkmark
	1500	1050–1800 GeV	_	-	-

Outlook: Top Decays

Can consider the full $2 \rightarrow 6$ top decay amplitudes

$$pp (\rightarrow \{h_1, h_2\}) \rightarrow t\bar{t} \rightarrow W^+ W^- b\bar{b} \rightarrow \bar{\ell}\nu\ell'\bar{\nu}'b\bar{b}$$

with spin correlations in the double pole approximation

Bevilacqua, Hartanto, Kraus, Weber, Worek [1912.09999]

Outlook: Generalisation of the Code

The code can be generalised to work for any loop-induced process, e.g.

Double Higgs production

Effective field theories

Outlook: Heavy Higgs Propagator

For one of our benchmark points: $\frac{\Gamma_{h_2}}{M_{h_2}} \sim 0.18$

Exact scalar propagator:

$$\Pi(p^2) = \frac{i}{p^2 - m_0^2 - \Sigma(p^2)}$$

Optical theorem On-shell approx.

$$\operatorname{Im}\Sigma(p^2{=}m^2){=}{-}m\Gamma$$

Breit-Wigner:

$$\Pi(p^2) \sim \frac{i}{p^2 - m^2 + im\Gamma}$$

• We have studied the interference of a heavy Higgs with the continuum QCD background at NLO QCD

• The interference is loop-induced \times tree-level at LO, and has a complicated structure at NLO

 This has required a specially built Monte Carlo – which can be now be used for other loop-induced processes

Thank you very much for your attention! :)

Backup Slides

Results: Additional Differential Distributions

LNF Theory Seminar

A second project:

H1jet

arXiv:2011.04694 [hep-ph]

with Andrea Banfi

h1jet.hepforge.org

Motivation

A fast and easy-to-use tool to compute transverse momentum distributions

Loops: SM top + BSM top partner

The method

Processes $2 \rightarrow 1$ and $2 \rightarrow 2$ but can be extended

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T} = \frac{p_T}{8\pi} \int_{-\eta_M}^{\eta_M} \mathrm{d}\eta \sum_{i,j} \left[\frac{\mathcal{M}_{ij}^2(\hat{s}, \hat{t}, \hat{u})}{E_X \hat{s}^{3/2}} \mathcal{L}\left(\frac{\hat{s}}{s}, \mu_F\right) \right]$$

$$\eta_M = \ln\left(x_M + \sqrt{x_M^2 - 1}\right) \qquad \qquad \hat{s} = (p_T \cosh\eta + \sqrt{m_X^2 + p_T^2 \cosh^2\eta})^2$$
$$x_M = \frac{s - m_X^2}{2p_T \sqrt{s}} \qquad \qquad \hat{t} = -p_T e^{-\eta} \sqrt{\hat{s}}$$
$$\hat{u} = -p_T e^{\eta} \sqrt{\hat{s}}$$

1D integration done using adaptive Gaussian quadrature

Code interfaced with CHAPLIN and HOPPET

Built-in models

Provided user-interface allows for a custom process given a user-provided amplitude, $|\mathcal{M}(\hat{s}, \hat{t}, \hat{u})|^2$

A live demonstration:

h1jet.hepforge.org/online