Study of Diffractive Scattering in Proton-Proton Collisions at 13 TeV

with the ATLAS and ALFA Experiment

CDS: https://cds.cern.ch/record/2275644

Alexander Lind

Presentation of Master's Research done at the Niels Bohr Institute in Copenhagen

SEPTA Meeting at Sussex Wednesday, 6 December, 2017

• **Theory:** What is Diffraction?

- **Experiment:** Detection of Diffractive Events
- Simulation Framework
- Phenomenological Study
- Data Analysis of new 13 TeV data from the LHC Run 2 period

Theory

What is Diffractive Scattering of Protons?

The Proton

When probed at high energies the proton looks more like this

Hadrons are composite objects (consists of partons, i.e. quarks and gluons) with a time-dependent structure

Parton distribution function (PDF):

 $f_i(x,Q^2)$ = number density of partons *i* at momentum fraction *x* and probing scale Q^2

Structure function:

$$F_2(x,Q^2) = \sum_i e_i^2 x f_i(x,Q^2)$$

Reggeons and Pomerons

A proton minding its own business...

...can for a short (virtual) while emit a Reggeon...

Reggeons and Pomerons

...or emit a **Pomeron**, a hypothetical glue-ball state with the quantum numbers of the vacuum

Diffractive Events

Not physical to ask whether there was an (unmeasurable) Pomeron

Physical to ask if there was a large rapidity gap

Hard Diffraction

Single Diffractive Cross-section using Factorization:

$$\frac{\mathrm{d}\sigma_{\mathrm{SD}}}{\mathrm{d}\xi\mathrm{d}t} = f_{\mathbb{P}/p}(\xi,t)\sigma_{\mathbb{P}/p}$$

Pomeron Flux Factor

We don't know the exact Pomeron flux (can't calculate it from first principles) But we can phenomenologically model it **Pomeron Flux Parameters**

The Pomeron Flux depends on the Regge trajectory for the Pomeron

 $\alpha(t) = 1 + \varepsilon + \alpha' t$

The Monte Carlo Event Generator **Pythia** allows us to simulate diffractive pp collisions

Goal / Purpose

 Study of Diffractive Scattering at the ALFA and ATLAS detectors

 Investigate the effect of the Pomeron Flux parameterization on observables

• Fit Pomeron Flux parameters to new 13 TeV data

Motivation

Why bother?

• Production of Minimum Bias Monte Carlo samples

• A better understanding of the Pomeron

 An understanding of Diffraction and the Pomeron may help in uniting QCD with Regge Theory

Experiment

But how do we detect Diffractive Events?

Detection of Diffractive Events

The ALFA Detector is just a ~ few mm in size located ~240 m from collision point

The ALFA Detector

Data

Energy: $\sqrt{s} = 13 \text{ TeV}$ Crossing angle: $\theta_C = 2 \times 50 \ \mu \text{rad}$ Optics: $\beta^* = 90 \text{ m}$ Dates: 15 - 18 October, 2015

Simulation Framework

A fast simulation of the detector response was developed for the purposes of this thesis

Simulation Framework

Pythia for Generation, Rivet for Analysis

- Beam Transport: Transport of Protons down the LHC beam pipe to ALFA
- ALFA Acceptance and Smearing
- Reconstruction of Proton Kinematics
- ATLAS Simulation: Inner Detector and MBTS

Beam Transport

Magnetic lattice in the LHC beam pipe from ATLAS to ALFA will affect the Proton Trajectories

MAD-X can simulate and describe each element

ForwardTransportFast can simulate the proton trajectory at any point down the beam pipe

Parameterization:
$$u_{\rm RP}\left(u_{\rm IP}, p_{u,\rm IP}, \frac{\Delta p^*}{p}\right)$$

$$u = \{x, y\}$$

LHC and ALFA Acceptance

LHC Acceptance:

Protons may bend so much that they hit the wall of the beam pipe

ALFA Acceptance:

Protons hitting the ALFA detector

LHC and ALFA Acceptance

Acceptance Plots for ALFA Detector on A-side, 237 m

LHC Acceptance

ALFA Acceptance

LHC and ALFA Acceptance

ALFA Hitmaps and Smearing

Outer: 40 μm

Reconstruction of Proton Kinematics: Resolution

Event Selection

- Exactly 1 hit in ALFA in one of the 4 arms The other arms are empty
- At least 2 tracks in ATLAS inner detector
- Exactly 1 reconstructed primary vertex
- Hit in MBTS on opposite side of the ALFA Hit

Sensitivity to Model Parameters (ε , α')

What happens when we vary the model parameters?

Sensitivity to the model parameters come in two ways:

- Accepted Event Count (Total Cross-section)
- Shape of the Distributions (Differential Cross-section)

We have generated 9 samples with 1 million events each

And with permutations of the parameters values:

$$\varepsilon = \{0.02, 0.085, 0.15\}$$

$$\alpha' = \{0.1, 0.25, 0.4\} \text{ GeV}^{-2}$$

Accepted Event Count (Total Cross-section)

	$\epsilon=0.02$	arepsilon=0.085	$\epsilon=0.15$
$\alpha' = 0.1 \text{ GeV}^{-2}$	$(19.44 \pm 0.04)\%$	$(10.11 \pm 0.03)\%$	$(4.08 \pm 0.02)\%$
$\alpha' = 0.25 \text{ GeV}^{-2}$	$(21.33 \pm 0.05)\%$	$(11.28 \pm 0.03)\%$	$(4.63 \pm 0.02)\%$
$\alpha' = 0.4 \text{ GeV}^{-2}$	$(21.58 \pm 0.05)\%$	$(11.62 \pm 0.03)\%$	$(4.64 \pm 0.02)\%$

Increasing $\varepsilon \Rightarrow$ Lower accepted event count Increasing $\alpha' \Rightarrow$ Larger accepted event count

Relative Energy Loss ξ

Varying \mathcal{E}

Transverse Momentum p_T

Varying \mathcal{E}

Fit Procedure to determine the model parameters

Goal:

Develop a fit procedure to determine model parameters ε and α'

We want to minimize:

$$\chi^2(\varepsilon, \alpha') = \sum_{i}^{n} \frac{(O_i - E_i(\varepsilon, \alpha'))^2}{\sigma_{O_i}^2 + \sigma_{E_i}^2}$$

Observation: O_i

Expectation Value: $E_i(\varepsilon, \alpha')$

Fit Procedure

We consider:
$$\xi$$
 and p_T
 $\rho_{\xi,t} = (12.8 \pm 0.2)\%$
 $\rho_{\xi,p_T} = (-2.0 \pm 0.2)\%$

Non-equidistant Binning:

Fit Procedure - Expectation Values

Expectation Values:

Extrapolation between our 9 samples:

$$f_{\mathbb{P}/p}(\xi,t) \sim \xi^{1-2\alpha(t)} \longrightarrow E_i(\varepsilon,\alpha') = a^{b\varepsilon + c\alpha' + d}$$

Fit Procedure - Expectation Values

Two test samples with an unknown parameterization was generated

Plot of χ^2 - function for Test Sample 1:

Fit Procedure - Results

Fit Procedure - Discussion

Possible improvements to the fit procedure:

Generating more samples will improve resolution in the parameter values

More events per sample will give better statistics

Data Analysis

A look at new 13 TeV data from ATLAS and ALFA

Data Analysis - Results

Data Results compared to Simulated SD

Regge Theory predicts $1/\xi$ But we see a flat shoulder (seen before)

Data Analysis - Background

Possible Background Sources:

Beam Background

• Non-diffractive background

• Double diffractive background

Data Analysis - Background

Data Analysis - Background

Data Analysis - Mapping

Mapping onto Acceptance Region:

Data Analysis - RUCs

Beam Background

Random Uncorrelated Coincidences (RUCs)

Beam background (RUCs) give a characteristic "boomerang" shape

Data Analysis - RUCs

When knowing the normalization of the beam background the distribution of RUCs can be subtracted from data

Data Analysis - LUCID

ALFA: $9 \lesssim |\eta| \lesssim 14$ LUCID: $5.6 < |\eta| < 5.9$

A SD proton will NOT hit LUCID

However, background from beam, DD and ND may hit LUCID

Data Analysis - LUCID

Data Analysis

Data Analysis

Now, we let the relative normalizations be free parameters

Data Analysis - Discussion

Summary and Conclusions

 Hadronic diffraction is not well-understood and many different approaches have been proposed

• A simulation framework was developed to study diffraction at the ATLAS and ALFA detector

New 13 TeV data was analysed
 Flat plateau observed that is not yet fully understood

Data Analysis - Discussion

Outlook and Future Studies

- Until we understand the flat plateau, we cannot use the fit procedure on data
- A full Geant4 simulation of ATLAS, ALFA, and the LHC magnets will provide a better understanding of the background
- Study of energy-dependent multiple scattering and its effects on the ALFA detector resolutions
- Detector Topology being main factor in Data-MC discrepancy? Track reconstruction efficiency of the ATLAS ID as a function of pseudorapidity and pT could be important

Thank you for listening!

Back-Up Slides

Behavior of the Total Cross-section

Pomeron Flux Parameterizations in Pythia

Several Models implemented in Pythia:

- Schuler-Sjöstrand
 - Default in Pythia
 - Fixed parameter values: $\varepsilon = 0$, $\alpha' = 0.25 \text{ GeV}^{-2}$
- Donnachie-Landshoff
 - Allows varying parameter values
- Minimum Bias Rockefeller (MBR)
 - Allows varying parameter values

Data Analysis - DD Sensitivity

