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Abstract

The aim of this project is to investigate the effect of the anomalous triple gauge boson couplings
∆gZ1 , ∆κZ and λZ on the kinematic variables by utilization of the Optimal Observables method.
This is done by using 2598 W±Z0 events selected from proton-proton collisions with a center of
mass energy of

√
s = 8 TeV and an integrated luminosity of

∫
Ldt = 20.28 fb−1 recorded with the

ATLAS experiment in 2012. It is found that the process pp → l′νl′ l
±l∓, by applying appropriate

selection cuts, will lead to a nearly clean signal of WZ events. Monte Carlo samples simulated to
include TGCs has been used to compare with the data. This project presents an investigation of the
Optimal Observables analysis method in the context of hadron colliders. The Optimal Observables
for the three anomalous coupling parameters show strong sensitivity to the anomalous couplings
with the OO(∆gZ1 ) distribution appearing to be the least sensitive to the anomalous TCGs.

Resumé på dansk

Formålet med dette projekt er at undersøge effekten af de anormale tre-boson koblinger ∆gZ1 ,
∆κZ og λZ på de kinematiske variable ved benyttelse af Optimale Observable metoden. Dette er
gjort ved at benytte 2598 W±Z0 begivenheder selekteret fra proton-proton sammenstød med en
massemidtpunktsenergi på

√
s = 8 TeV og en integreret luminositet på

∫
Ldt = 20.28 fb−1 målt med

ATLAS eksperimentet i 2012. Der bliver fundet at processen pp → l′νl′ l
±l∓ giver, med passende

udvælgelseskrav, et næsten rent signal af WZ begivenheder. Monte Carlo prøver, som er simuleret
til at inkludere tre-boson koblinger, er blevet benyttet til sammenligning med data. Dette projekt
præsenterer en undersøgelse af Optimale Observable analyse metoden i forbindelse med hadron
kollisionseksperimenter. De Optimale Observable for de tre anormale kobling parametre udviser
stærk følsomhed for de anormale koblinger, hvor OO(∆gZ1 ) distributionen ser ud til at være den
mindst følsomme over for de anormale tre-boson koblinger.
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Theoretical Background

1 Introduction

Particle physics is the study of the fundamental constituents of matter and the forces between them.
However, which particles that have been considered fundamental has changed with time as new dis-
coveries have been made. For the past 40 years, the Standard Model (SM) has successfully described
nearly all phenomena observed at high energy collider experiments. However the Standard Model is
expected to break down at a finite energy scale and as a result, much work is put in to look beyond
the theory, an area called New Physics (NP). The search for New Physics is motivated by the desire to
unravel the behavior of Nature and to really understand how the world works at the deepest possible
level. The Large Hadron Collider (LHC) at CERN is currently the most powerful particle collider in
the world and with the new upgrade finished in early 2015 and a new beam energy of up to 14 TeV,
the prospects of discovering New Physics is looking very promising.

There are two ways to look for New Physics. A model-dependent search which considers predictions
from a specific theory and a model-independent search which considers deviations from the Standard
Model. This study will use a model-independent search, where the Standard Model is taken as a
low energy approximation of new physics and can therefore be expanded in a similar way as a series
expansion of a function in the neighborhood of a minimum. Specifically this project will look at possible
deviations in the Electroweak theory of the Standard Model.

This project is a study of the charged triple gauge boson vertex WWZ and the associated triple
gauge boson couplings. The vertex is included in the Standard Model and according the Standard
Model, the couplings have a certain strength. If the couplings differ from the Standard Model, however,
then the couplings are said to be anomalous and indicates new physics as an extension to the Standard
Model. The effect of the anomalous couplings can be seen in the observables. In this study the effects
of the anomalous triple gauge boson couplings will be investigated.

2 Theoretical Background

In this section we will present the theoretical background necessary for the understanding of the
experimental search of this project. The modern theory of particle physics is called the Standard Model
(SM) and it attempts to explain elementary particles in terms of their properties and interactions. Next
a short review of quantum field theory (QFT), the framework on which the SM is built, is required
along with a description of Lagrangian formalism and Feynman diagrams. Finally we will present the
triple gauge boson vertices related to this study.

2.1 The Standard Model

The Standard Model (SM) of particle physics is the theory of how fundamental particles interact,
governed by the four known fundamental forces. Listed by increasing strength, they are: gravitation,
the weak nuclear, the electromagnetic and the strong nuclear force. All of the forces but gravity are
understood in the context of quantum theory.

The fundamental particles can be divided into two groups: the fermions, also known as matter/anti-
matter particles, and bosons. The bosons are further divided up into gauge bosons that act as force
carriers and the newly discovered spin-0 Higgs boson, with the possibility of more Higgs bosons existing,
though they have yet to be confirmed. The fermions are half-integer spin particles that are divided
up into quarks and leptons. The quarks are positively charged and the leptons are negatively charged
except for the neutral neutrinos. Of the negatively charged leptons we have the electron e, the heavier
muon µ and tau τ . The light and neutral neutrinos consist of the electron neutrino νe, the muon
neutrino νµ and the tau neutrino νt.
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Force Relative
strength Theory Mediator Mass

(GeV/c2) Range (m)

Strong 1 Chromodynamics Gluons 0 10−15

Electromagnetic 10−3 Electrodynamics Photon 0 Infinite

Weak 10−14 Electroweak theory W±

Z0
80.385
91.1876

10−18

Gravitation 10−43
General Relativity/
Geometrodynamics Graviton 0 Infinite

Table 1: Here the strength is relative to the strong force. The numbers in this column should not be
taken too literally as the strength of the forces depends on the nature of the source and how far away
you are. What is listed in the theory part for gravitation is the relativistic theory of gravity. There
is no quantum theory of gravity yet, though some have been proposed. For most purposes, the role of
gravity is assumed to be negligible and nonsignificant in elementary particle physics.

Of the quarks, the most well known is the up and down quark of the first generation (see figure
1). Along with the eight gluons, the electrically neutral and massless mediators of the strong force,
the quarks are the only particles with color charges and therefore the only interesting particles in the
context of quantum chromodynamics (QCD). The mediator for the electromagnetic force is the neutral
and massless photon and all electrically charged particles can interact within the theory of quantum
electrodynamics (QED). For the weak force, the mediators are called W and Z bosons with masses
about 80-90 times the mass of the proton. The two W bosons are electrically charged while the Z is
neutral. All of the fermions are spin-1/2 and all of the observed gauge bosons are spin-1 [1].

Figure 1: The particles of the Standard Model. The fundamental fermions are listed to the left in
purple and green, and the bosons are to the right in red and yellow. Mass, charge and spin of all
particles are included. Source: Wikimedia Commons.

All of the particles in the SM are assumed to be elementary, meaning they are treated as point particles,
without internal structure or excited states. Another class of particles called hadrons is also observed
in nature but they are composite particles consisting of either three quarks (baryons) or a quark and an
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anti-quark (mesons). Due to color confinement, particles with color charge, that is quarks and gluons
collectively known as partons, are not themselves directly observable, only their bound states.

For every particle, whether it is one of the elementary particles of the SM, or a hadron, there is an
associated particle of the same mass, but opposite charge, called its antiparticle. In certain cases, for
example with the neutral photon, the particle is its own antiparticle [2].

SM in its current state is not the final word on the subject, and the prospects of achieving higher
energies in high energy experiments (the LHC achieved 8 TeV of energy before the long shutdown
(LS1) in 2013 and will in 2015 when it reopens, run up to a planned energy of 14 TeV) opens up the
possibility for discovering new physics (NP), physics beyond the SM.

2.2 Quantum Field Theory

Quantum Field Theory (QFT) is the theoretical framework on which elementary particle physics is
built. As a complete review of quantum field theory would be beyond the scope of this project, this
section on QFT will only serve as a short introduction. QFT can be seen as the unification of quantum
mechanics and special relativity.

As elementary particles are extremely small1 and typically also very fast (especially in the high
energy experiments conducted at the LHC), elementary particle physics naturally falls under the do-
minion of QFT.

2.2.1 From classical physics to QFT and Lagrangian formalism

From the 18th century and onward, a refinement of the original Newtonian mechanics was developed
by Lagrange and Hamilton among others. The formulation of QFT is built upon this formulation of
classical mechanics so a quick summary is needed. In classical mechanics, the dynamics of the system
can be described by two fundamental quantities, the Hamiltonian and the Lagrangian. The Lagrangian
takes the form:

L = T − V (1)

Where T denotes the kinetic energy and V is the potential energy of the system. From this we can
define the action S (also called the action integral), as the time integral over the Lagrangian L of the
system:

S =

∫ t2

t1

L(q(t), q̇(t), t)dt (2)

Here q(t) 2 is the path taken by the system, moving from a configuration at time t1, the initial state,
to the configuration at time t2, the final state. ˙q(t) is its derivative. The Principal of Least Action
then states that the action S of the system will take the smallest possible value, that is the variation
of the action is equal to zero:

δS = δ

∫ t2

t1

L(q(t), q̇(t), t)dt = 0 (3)

1It is unclear how small a fundamental particle like the electron actually is and whether it is even fundamental or if
it does have a substructure. However, the size of it will be less than 10−18 m.

2Mathematical symbols in bold will denote a 3-dimensional vector in this project.
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This is also called Hamilton’s principle. This essentially means that an object should take the simplest
and shortest path between two configurations [3].

2.2.2 The Feynman Path Integral

Next is to find a quantum formulation similar to the classical; a generalisation of the action principle
in quantum theory. As we saw previously, classical mechanics can give a definite answer to the path of
an object, but in quantum mechanics the path is not well-defined and we are rarely interested in the
path of particle but rather the probability of finding a particle in particular state at a given time. This
is also called the transition amplitude. In this case, we can write the Lagrangian as a spatial integral
of a Lagrangian density L:

L(q(t), q̇(t), t) =

∫
L(φ, ∂µφ)d3x (4)

where φ and ∂µφ are the fields and their corresponding derivatives. We can then write the action as:

S =

∫
Ldt =

∫
L(φ, ∂µφ)d4x (5)

And to continue with the analogy to the classical formulation, the variation of the action leads to the
Euler-Lagrange equations of motion for the field φ(x):

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (6)

So in QFT the situation is somewhat different from the classical picture as the system is allowed
to follow all possible paths, not just the classical one, though in most cases the classical path is
still dominating with smaller contributions from other paths. These contributions enter as quantum
fluctuations around the classical path. In QFT then, instead of having a single uniquely defined path,
we have a sum over all possible paths, or trajectories, which will be used to calculate a quantum
transition amplitude. This sum is what we call the Feynman path integral. With a given Lagrangian
and by the use of the Feynman path integral, the transition amplitudes (that is the probability of going
from an initial state to a final state) are calculated using Feynman diagrams [4].

2.2.3 Feynman Rules and Diagrams

After writing up the Lagrangian for a system we then need to quantize it which can only be done
by approximation. As described before we consider the classical path and then introduce quantum
corrections with the method of Feynman diagrams. Feynman diagrams make it easy to distinguish
between possible paths for the transition from a given initial state to a final state. For each different
path you will have a topologically different Feynman diagram. Each diagram for a transition contributes
to a sum called the amplitude or the matrix elementM, which contains all the dynamical information
of the system. We calculate it by evaluating the relevant Feynman diagrams, using the Feynman rules
appropriate to the interaction in question (i.e. electromagnetic, strong or weak). Feynman diagrams
are basically built up of three building blocks as seen in figure 2, these are: vertices, propagators and
loops, as described below.

Vertices: an interaction where a particle goes in and other particles go out. Given a certain type of
interaction and the conservation laws, some vertices are allowed while others are not. Each vertex
has a coupling constant which describes the strength at that vertex. These coupling constants
are included in the calculation of the matrix element.

4
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Figure 2: The three basic building blocks of Feynman diagrams. From left to right: vertex, propagator
and loop.

Propagators: free movement between vertices. Corresponds to the momentum of the particle. Only
external particles (particles that go in or out of a given diagram) are required to be ’on-shell’,
which means that the particle satisfy the equation: E2 − p2c2 = m2c4. Internal lines are also
called virtual particles.

Internal loops: a particle/anti-particle pair created and annihilated in a loop.

The Feynman rules then determine how a certain building block contributes to the matrix element.
The matrix element will be a function of the masses (m), the couplings (g) involved and the phase
space information (Ω). For a more thorough description of Feynman rules at an introductory level, see
reference [1].

(a) LO (b) NLO (c) NNLO

Figure 3: Feynman diagrams of WZ production at a hadron collider. (a) is the leading order diagram.
(b) is the next-to-leading order diagram, with a gluon radiated by the quark. (c) is the next-to-next-to-
leading order diagram, with a gluon loop. The diagrams are s-channel diagrams and contain a TGC
vertex, as shown on (a).

In figure 3, a couple of different Feynman diagrams are shown. They all illustrate the same process:
qq̄ → WZ. Straight lines indicate fermions (leptons and quarks), while wiggly lines indicate pho-
tons, W and Z bosons. Lines that look like springs indicate gluons. The diagrams are meant to be
read as if time flows horizontally, to the right. The arrows on the lines of the quark and anti-quark
indicate whether it is a particle or an antiparticle. An arrow going ’backward in time’ indicates an
anti-particle. The simplest diagrams possible are called leading order (LO). With growing complexity
we have next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) diagrams. All of the
diagrams contain a TGC vertex.

There exists three experimental probes of elementary particles interactions: bound states (de-
scribed adequately by non-relativistic quantum mechanics), decays and scattering. For high energy
experiments, scattering is the interesting one and the observable of choice is the differential scattering
cross section:

dσ =
|M|2

Φ
dΩ (7)
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where φ is the incident flux and dΩ is the differential phase space element. The differential cross section
will depend on the TGCs and will in fact be a quadratic function of the TGCs. The calculation of the
scattering cross section is called Fermi’s Golden Rule for Scattering [1].

2.2.4 Renormalization

The method of Feynman diagrams works very well as long as the diagrams in question do not contain
any loops. If loops are present, it is possible for the scattering amplitude to diverge due to the
unconstrained momentum of the particles in the loop. This will lead to unphysical results as all
observable quantities must be finite. Historically, this disaster held up the development of quantum
electrodynamics and QFT in general for nearly two decades until systematic methods were developed
for coping with this problem and this method is now called renormalization. It is essentially a ’sweeping
under the rug’ solution. To get around the divergences, a cutoff scale Λ on the high-momentum phase-
space is introduced to cancel the terms going to infinity by letting Λ → ∞. If infinities arising from
higher-order diagrams (with loops) can be accommodated by renormalization we say that we have a
renormalizable theory. Having a renormalizable theory with a certain cutoff scale Λ, means that the
scattering amplitudes will be a function of this cutoff scale as well as the masses, coupling constants
and phase space information:

M =M(m, g,Ω,Λ) (8)

At this point all the divergent, Λ dependent terms appear in the final answer in the form of additions to
the masses and coupling constants. If taken seriously, this means that the physical masses and couplings
are not the m’s and g’s that appeared in the original Feynman rules, but rather the renormalized ones:

mphysical = m+ δm, gphysical = g + δg (9)

The fact that these extra factors are infinite is disturbing but not catastrophic for the theory as we never
measure them in experiments. What we measure is the physical values, which are finite. Evidently
then the factors m and g must contain compensating infinities [1].

2.2.5 Symmetries

Symmetries are a recurring theme in physics and play an important role in elementary particle physics.
This is in part because of their relation to conservation laws and in part because they permit one to
make some progress when a complete dynamical theory is not yet available. A famous theorem that
relates symmetries and conservation laws is Noether’s theorem which states that every symmetry of
nature yields a conservation law and conversely, every conservation law reflects an underlying symmetry.
By symmetry we mean an operation you can perform (at least conceptually) on a system that leaves
it invariant, that is it carries into a configuration that is indistinguishable from the original one. To
construct the Lagrangian, we impose the two following symmetries:

Lorentz invariance: required as the velocity of the particles reach relativistic limits. A system is
said to be Lorentz invariant if it remains the same under the Lorentz transformation.

Gauge invariance: fundamental requirement from which the nature of particle interactions is de-
duced. For gauge theories, invariance is required under the gauge transformation.

A possible Lagrangian would in classical mechanics take the form of equation 1. In QFT we can give
a similar Lagrangian with a complex scalar field:

L = ∂µφ
†∂µ − V (φ†φ) (10)

6
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This Lagrangian has a global symmetry as it is invariant under the gauge transformation φ(x) →
φ′(x) = eiα(x)φ(x), which is dependent on space-time. From electrodynamics we have the Maxwell
equations on the form:

E = −∇φ− ∂A
∂t

, B = ∇×A (11)

which are invariant under the local gauge transformation:

A′ = A +∇λ, φ′ = φ− ∂λ

∂t
(12)

Which is a function of the space-time coordinates and therefore differs from the global transformation.
Furthermore there are three discrete symmetries:

Charge conjugation, C: changes particles to their anti-particles and the other way around, Cψ = ψ̄.

Parity transformation, P: reverses the space coordinates (x̄, t)→ (−x̄, t).

Time-reversal transformation, T: reverses the time coordinate (x̄, t)→ (x̄,−t).

Any relativistic field theory must be invariant under CPT transformations, but not necessarily under
C, P and T , separately. Experiments show that gravity, strong- and electromagnetic interaction are
symmetric under C, P and T transformations while weak interaction violate C, P and CP .

2.2.6 Quantum Electrodynamics

Quantum electrodynamics (QED) is the oldest, simplest and arguably the most successful of the
dynamical gauge quantum field theories, and the other theories are modelled on it. It describes the
interaction between charged particles (electrons, electron-like particles and quarks) and photons. All
electromagnetic phenomena are ultimately reducible to the following elementary process:

Figure 4: A simple QED process. This is not a valid Feynman diagram in itself but the simplest
building block of one in QED. Here e indicates any charged fermion and not necessarily an electron.

While particles are described by the Schrödinger’s equation in non-relativistic quantum mechanics,
spin-1/2 particles are, in relativistic quantum mechanics, described by the Dirac equation:

i~γµ∂µψ −mcψ = 0

(iγµ∂µ −mc)ψ(x) = 0 (Natural units: ~ = c = 1) (13)

which naturally makes it the starting point of QED, as leptons are spin-1/2 3. The kinematic and
dynamics of the particle field ψ(x) are captured in the Lorentz invariant Dirac Lagrangian:

LDirac = ψ̄(x)(iγµ∂µ −m)ψ(x) (14)
3As a side note, particles of spin 0 are described by the Klein-Gordin equation and particles of spin 1 by the Proca

equation. The derivation of these three equations is beyond the scope of this study.
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which is the Lagrangian describing the dynamics of the free Dirac fermions. Here ψ is a spinor (an
element of complex vector space) and not a scalar like φ. This is due to the fact that electrons, which
are the particle of interest here, have a spin with a direction that cannot be described by a scalar
field. The Lagrangian can be made invariant by introducing a four-vector Aµ(x) = (φ,A) with the
transformation:

Aµ(x)→ A′µ(x) ≡ Aµ(x)− 1

e
∂µα(x) (15)

where e is the coupling constant between the particle and the introduced gauge field. The ordinary
derivatives have to be replaced with the covariant derivative:

∂µ → Dµ ≡ ∂µ − ieAµ (16)
Dµψ(x) ≡ (∂µ − ieAµ(x))ψ(x) (17)

With these substitutions the Lagrangian is then given by:

L = ψ̄(x)(iγµ∂µ −m)ψ(x)− eψ̄(x)γµψ(x)Aµ(x) (18)

which is invariant under local transformation. The field Aµ does not have any degrees of freedom and
therefore cannot propagate in space-time. The property to propagate can be given by introducing an
additional kinematic term in the Lagrangian:

Lkinematic = −1

4
FµνFµν (19)

where we have that F = ∂µAν−∂νAµ. This makes it possible to identify the field Aµ as the photon field
and it is now equivalent with the kinematic term from classical electrodynamics Lkin = 1

2(E2 −B2).
The mass of the photon would be given by a mass term for the gauge field Lmass = 1

2m
2AµAµ but

this would violate gauge invariance, requiring that the photon must be massless. This then makes it
possible to write the Lagrangian for spin-1/2 particles interacting with a massless electromagnetic field
(propagated by photons):

LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1

4
FµνFµν (20)

As mentioned in the beginning of this subsection, the weak and strong quantum field theories, called
Quantum Flavor Dynamics (QFD)4 and Quantum Chromodynamics (QCD), are modelled on the
formulation of QED. The structure of these theories are however much richer and a derivation of them
would be too big of a mouthful so we simply state the results of the electroweak theory, which is the
important interaction for this project.

2.2.7 Electroweak theory

The electroweak theory (EW theory), also known as the Glashow-Salam-Weinberg (GWS) theory, is the
unification of the electromagnetic interaction and the weak interaction. It consists of four gauge fields:
the photon-, the W± and the Z0 field. These are collected under the gauge symmetry SU(2)×U(1).
The gauge transformation actually requires the masses of the bosons of the weak interaction to be
massless like the photon which is in disagreement with results from experiments that show that they
are in fact quite massive, see table 1 for masses. However this is fixed as the SU(2)×U(1) symmetry
is spontaneously broken by the Higgs mechanism which is the cause of the large mass of the W± and

4Albeit the weak interaction is better understood in the context of the electroweak theory.
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Z0 bosons. Before the symmetry breaking, the theory contains four massless gauge bosons. One for
U(1), Bµ and three for SU(2), W i

µ, where i = 1, 2, 3. The gauge boson field strength is then:

Lg = −1

4
W i
µνW

µν
i −

1

4
BµνBµν (21)

The field strength tensors of the four fields are given by:

Bµν = ∂µBν − ∂νBµ (22)
W i
µν = ∂µW i

ν − ∂νW i
µ − gεijkWj

µWk
ν (23)

The two terms of equation 21 are the kinetic energy and the self-coupling of the W i
µ fields and the

kinetic energy of the Bµ. The field strength tensors of SU(2) (of equation 23) contain a bilinear term,
and the term generates the trilinear and quadrilinear self-couplings of the W i

µν . This corresponds to
the self-couplings of the bosons. The self-interaction is a consequence of the necessity to maintain
gauge invariance. Not all interactions are allowed though. There are many interesting aspects of
the electroweak theory but the one we are interested in is the interaction between the gauge bosons
themselves.

2.3 Anomalous Triple Gauge Boson Couplings

On the basis of the standard model and quantum field theory we have the basic knowledge to introduce
triple gauge boson couplings and their vertices where the three gauge-bosons interact. A very inter-
esting result of the electroweak theory is that interactions between the gauge bosons themselves are
allowed. This leads to three and four boson vertices. In this project we are interested in interactions
with three gauge bosons. This is possible as the W± bosons carry charge. Because of this, interactions
like ZZZ and ZZy are not possible and similar vertices including an odd number of W± bosons, such
as WZZ and WZy are not possible either, due to charge conservation. The only possible TGCs are
WWy and WWZ, with the latter being the interaction we will be concerned with.

This project will look at the WWZ vertex through the introduction of anomalous triple gauge
couplings (aTGCs) by the method of effective Lagrangian. A coupling is anomalous if it is not present
in the SM Lagrangian, whereas the entire vertex is called anomalous if it is not found in the SM. As
mentioned before equation 21 allows both cubic and quartic self-coupling terms for the gauge bosons
of the electroweak theory. In the SM the Lagrangian for the WWZ interaction takes the form:

LWWZ
SM = −igWWZ

[
(1 + ∆gZ1 )Zµ(W−µνW

+ν −W+
µνW

−ν) + (1 + ∆κZ)W+
µ W

−
ν Z

µν
]

(24)

The Lagrangian only includes operators with mass-dimension 4, which is a requirement for renormaliz-
ability. To study the anomalous couplings we must introduce an effective theory which is a low energy
approximation. Writing an effective Lagrangian is a smart way to introduce New Physics (NP) to an
existing model. The concept is similar to the series expansion of a mathematical function, where the
expansion only includes a couple of terms but is a good enough approximation in the neighborhood
of a certain point. The effective Lagrangian will assume that the scale of the new physics, Λ, will
be much higher than the scale of the SM, as otherwise we would have seen the contributions of these
terms already. Another assumption is that the expansion will break down when the energy approach
that of Λ. We can then write a corresponding effective Lagrangian for low energies in powers of the
low energy fields, lI , and their derivatives:

Leff =
∑
I

cIOI(lI) (25)
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where OI is the effective interactions with mass dimension dI . cI is the effective coupling which depends
on the mass scale of the heavy degrees of freedom, Λ and the dI in the way cI ∝ Λ4−dI . A complete
derivation of the effective Lagrangian is out of scope for this project, so we will simply present it as it
is commonly written in the literature (see for example reference [5]).

The Lagrangian for the WWZ vertex is then:

LWWZ
eff =− igWWZ [(1 + ∆gZ1 )Zµ(W−µνW

+ν −W+
µνW

−ν)

+ (1 + ∆κZ)W+
µ W

−
ν Z

µν +
λZ
m2
W

ZµνW+ρ
ν W−ρµ

+ igZ5 εµνρσ((∂ρW−µ)W+ν −W−µ∂ρW+ν)Zσ

+ igZ4 W
−
µ W

+
ν (∂µZν + ∂νZµ)

+
κ̃Z
2
W−µ W

+
ν ε

µνρσZρσ −
λ̃Z

2M2
W

W−ρµW
+µ
ν ενραβZαβ] (26)

where W−µν = ∂µW
−
µ − ∂νW−µ , Zµν = ∂µZν − ∂νZµ. From the effective Lagrangian we find 7 coupling

parameters for the WWZ vertex5. The coupling parameters are dimensionless and setting them to
zero will give us the SM as before. The convention here is

∆gZ1 = gZ1 − 1, ∆κZ = κZ − 1 (27)

as the intention is to describe deviations from the SM. Because of this the derived quantities are used.
The 7 coupling parameters are: ∆gZ1 , ∆κZ , λZ , gZ5 , gZ4 , κ̃Z and λ̃Z . As the Lagrangian has dimension
(mass)4, the operators associated with the couplings will either have dimension (mass)4 or (mass)6.
We notice that the dimensionality of the operators associated with the 7 coupling parameters are:

Mass dimension 4: gZ1 , g
Z
4 , κZ and κ̃Z .

Mass dimension 6: gZ5 , λZ and λ̃Z .

This is important to note when comparing the terms as higher dimension operators have higher energy
dependence, which makes them more dominant than the others. An interesting thing to also note
is the CP-behavior of the coupling parameters. The three couplings ∆gZ1 , ∆κZ and λZ are CP-
conserving while gZ5 is CP-conserving but C/P-violating. The rest, gZ4 , κ̃Z and λ̃Z , are CP-violating.
The coefficients we will concern us with are the three CP-conserving coefficients ∆gZ1 , ∆κZ and λZ .

3 Diboson production at LHC

In this section we will present the phenomenology, that is the interface between the theory and the
experiment, of this study. Specifically it will be the phenomenology of hadron colliders. This section is
necessary as there is still a long way from the effective Lagrangian introduced in the previous section,
to the final states observed in the detector. Experimental particle physicists use so-called Monte
Carlo event generators in order to make precise predictions about kinematics distributions. An event
generator is an application that, given a scattering amplitude M for a hard process and a parton
distribution function (pdf), can compute the final states predicted by the theory. This is often referred
to as the truth-level. A typical Monte Carlo event generator technique for producing an event sample,
is the hit-and-miss technique, which allows for a random event selection according to the differential
cross sections (event weights). Some Monte Carlo event generators include POWHEG, PYTHIA, BHO,

5There are 7 coupling parameters for the WWy vertex as well, making it 14 in total for the anomalous TGCs. The
effective Lagrangian can be written in a similar way for the WWy or generalised for the WWV vertex, with V = {Z, γ}.
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Sherpa, MC@NLO and Jimmy. A simulation of the detector is also necessary. This is done with the
high-energy detector simulation Geant4. Finally the event needs to be reconstructed. This is done for
both data and simulation. This makes it possible to begin an analysis of the signal of interest, after
removing any fake signal from other processes which is referred to as ’background’.

3.1 Proton-proton collisions

A high energy proton-proton collision event can be thought of in this (slightly simplified) time-order:

1. Two protons come adequately close to each other. Each proton is characterized by a parton
distribution function (see section 3.1.2).

2. One ingoing parton (quark or gluon) from each proton beam enters the hard process. It is possible
for the partons to radiate photons and gluons in what is called ’initial state radiation’.

3. The hard process produces a number of outgoing particles. These particles may radiate final
state radiation.

4. Unstable particles are decayed. Hadronization happens for particles with color charge.

5. Some semi-hard process may happen between the other partons of the two protons.

6. The remnants of the proton may have some structure and color charge and can interact with the
other particles of the final state.

The event generator will simulate all of these steps. In the following subsections these items will be
explained a little more in depth [5].

3.1.1 Hard Process

The hard process is the key process of the Monte Carlo event generator. A hard QCD process is a
process for QCD jet production over a minimum transverse momentum pT threshold. The hard process
will produce quarks and gluons (collectively known as partons) with a very high transverse momentum,
pT . The hard process of interest in this project, is the production of a WZ system from quarks, that
is the process qq̄ → WZ as illustrated in figure 3(a). The differential cross section for this process is
written (as we saw in equation 7):

dσ(qq̄ →WZ) =
1

2ŝ
|M(qq̄ →WZ)|2d cos(θ)dσ

8(2π)2
(28)

where φ and θ are the azimuthal and polar angles, constituting the phase space. The differential cross
section is often referred to as the event weight.

3.1.2 Parton Distribution Functions

A parton distribution function (pdf) is used to model the compositeness of the proton. The pdf
expresses the probability for a quark or gluon (collectively called partons) to have a certain momentum
fraction x of the total energy of the proton. The pdf will give the probability as a function of momentum
fraction of the i’th parton, xi, and the momentum transfer scale Q of the collision, written as f(xi, Q

2).
The energy scale in this case, for WZ production, is the electroweak energy scale which is a lot larger
than the strong (QCD) scale.
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3.1.3 Initial and Final State Radiation

The incoming and outgoing partons of the hard process may radiate photons and gluons before and
after the process has happened. This is depicted in figure 3(b) represented by a next-to-leading order
(NLO) Feynman diagram as this is actually a higher order correction. A full NLO treatment can be
very CPU intensive but it has been recently made possible to calculate full NLO differential cross
sections using event generators. MC@NLO is an example of an event generator with such a capability.

3.1.4 Hadronization and the underlying event

The partons involved in the hard process can only be regarded as free particles on the timescales of
the QCD hard process. This means that they are organized into colorless hadrons so that they may
obey color confinement. This is approaced by models (such as the Lund string model or the cluster
model) and is incorporated into the event generators.

The underlying event is everything that is not related to the interaction of the hard process. This
refers primarily to interactions between the remnants of the protons. Furthermore, the partons can
undergo interactions scattering with other partons and give multiple interactions.

3.2 Simulating effects of triple gauge boson couplings

As outlined in section 2.3, the effect of the anomalous TGCs can be included as extra terms in the
effective Lagrangian. The effects of the anomalous TGCs will be included by a reweighting procedure.
The reweighting routine will take the SM cross section of the WZ event and rescale it to include
the anomalous contributions. The rescaling is done using the entire sample of SM WZ events and is
therefore much faster than using a MC event generator that includes every effect of the anomalous
couplings.

3.2.1 Reweighting procedure

Given a sample of Monte Carlo events generated at the SM and without TGCs, then the events can
be reweighted to non-SM TGC values by applying an event specific weight to each event:

w =
dσTGC
dσSM

(29)

The differential cross section dσTGC can be calculated for an event, given values of the TGCs and the
full matrix elementsM. The effects of the anomalous TGCs included in the Lagrangian (equation 26)
will be added to the cross section of the process by the matrix element. As the TGCs are added linearly
to the Lagrangian and the differential cross sections dependence of the matrix element, dσ ∝ |M|2,
the effects of the anomalous couplings will take the form of a quadratic equation:

dσ = F0 + a · F1 + a2 · F2 (30)

with F0 = dσSM . Having only one coupling will give three independent equations so the coupling a
will take the values a = {0, 1,−1}. This will give us the system:

dσ1 = F0

dσ2 = F0 + F1 + F2

dσ3 = F0 − F1 + F2 (31)
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or on matrix form: dσ1dσ2
dσ3

 =

1 0 0
1 1 1
1 −1 1

F0

F1

F2

 (32)

and in a more compact form: dσ = Â · F. We can then obtain the coefficients given the differential
cross sections and the values of the coupling constants. Isolating F gives us:

F = Â−1dσ (33)

The matrix Â is invertible as the system of equations in equation 31 and 32 are linearly independent.
This notation can be used to incorporate more than one coupling (in our case that would be three).
For three couplings, α1, α2 and α3, we have:

dσTGC =
(
1 α1 α2 α3

)
F0 F1 F2 F3

0 F4 F5 F6

0 0 F7 F8

0 0 0 F9




1
α1

α2

α3

 (34)

= F0 + α1F1 + α2F2 + α3F3 + α2
1F4 + α1α2F5

+α1α3F6 + α2
2F7 + α2α3F8 + α2

3F9 (35)

Note that dσSM = F0. This can be further generalised to n couplings. Here the F̂ matrix is 4 × 4
matrix on upper triangular form. A program following the reweighting procedure will calculate all the
coefficients F for every event. Then the weights from equation 29 can be calculated. For the SM the
event weight will of course be dσSM

dσSM
= 1.

Calculating the weight after the event generator step is usually referred to as the afterburner method.
The alternative would be to calculate the weight during the event generation. The two methods are
fundamentally the same though the afterburner method provides greater flexibility but also added com-
plexity, as the calculation of the weights and the event generation are decoupled and therefore allow
for modification. The afterburner method allows for using whatever event generator as the generation
of weight is no longer needed by the event generator. In addition, new processes can be considered by
adding a new matrix element to the generator [5].

4 Data Analysis

With the theoretical background for the anomalous triple gauge-boson couplings established and the
phenomenology for the diboson production at LHC, we can then turn to examine how these couplings
can be observed in experiments and which observables are sensitive to the anomalous TGCs. In this
section we will describe the event selection and preselection cuts. Then we will go over the analysis
methods used for extracting the anomalous TGCs.

4.1 ROOT, SFrame, CycleSequencer and AfterBurner

For its data analysis, this project used the programming library ROOT, developed at CERN. ROOT is
a cross-platform, object-oriented library as well as a collection of command-line and GUI applications,
written in C++. For more information on ROOT, see reference [6] and [7].

SFrame is a C++ framework built around the ROOT libraries for analysing particle physics data.
It reads ROOT files and adds support for creating ROOT objects (histograms, ntuples, etc.) and can
be configured through XML files. SFrame makes it possible to to run ROOT code in parallel.
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CycleSequencer is an application written on top of SFrame, by the two PhD students, Ask
Emil Løvschall-Jensen and Kristian Gregersen at the Niels Bohr Institute, under the supervision of
Jørgen Beck Hansen. CycleSequencer makes it possible to process ATLAS data and Monte Carlo files
(samples) through the use of selectors and tools. CycleSequencer is, roughly speaking, divided up into
three states: (1) initialization - where all variables and classes are declared, (2) Execution - where every
event (proton-proton collision) is read in one by one, (3) Finalization - where the output is saved and
histograms are plotted and so on. The selectors are C++ files used, for example, to select electrons
or photons in an event that you want to save. This makes it possible to discard events from the data
files that are not of interest for the project. This is called event selection or event cuts. This greatly
reduces the file sizes of the datasets/MC samples (by more than 99%). The tools are, for example, to
do Pileup reweighting.

AfterBurner is a standalone program, written partly in C++ and partly in Fortran, using the
ROOT library. It calculates the differential cross sections needed for the method of Optimal Observ-
ables (OO). It takes as input a ROOT file, calculates the matrix elements for F (as outlined in the
section 3.2) and saves them in an output ROOT file. The coefficients determined will be for the three
parameters, ∆gZ1 , ∆κZ and λZ , from the effective Lagrangian from section 2.3.

4.2 Event Selection

The event selection is a way to extract the signal from the background, or in other words, to separate
the final states originating from the process that is of interest from the the final states originating from
other processes which produce a similar looking final state. As the signal is usually quite small and the
background is quite large, the selection of the events of interest and the rejection of the background
events has to be optimised. For this project the process of interest is the pp→WZ (Feynman diagram
shown in figure 3(a)) where the final states considered contains three leptons and a neutrino, as the W
decays into a lepton and a neutrino and the Z decays into two leptons. The goal of the event selection
is to remove as much as possible of the background associated with the final state of interest (three
leptons and one neutrino) while leaving as much of the signal as possible, so we in the end have a clear
signal to work on. A cut based event selection is used to ensure (1) only well defined leptons and (2)
that reconstruction of W and Z is possible [5].

4.2.1 Background to WZ events

The final states of three leptons and one neutrino are considered very pure but it is still not straight-
forward to select the events of interest as other processes could have an experimental signature that
resemble that of the signal. There are some physics processes that are of special concern during
the selection and are considered important background contributions. These are the most significant
background processes in the search for WZ events:

Backgrounds with four leptons from the hard process. A ZZ with leptonic decay (four lep-
tons) can imitate the WZ signature if one of the leptons fails to be detected. The process
ZZ → 4l is sensitive to the neutral TGCs, which are another type of TGC than the one focused
on in this project. This is an important background process, as it closely resembles the WZ
process.

Backgrounds with two leptons from the hard process. A Z produced with a jet can be misiden-
tified as a WZ event if the jet is misidentified as a lepton. The process tt̄ → WbWb̄ can be
misinterpreted if one of the jets is misidentified as a lepton with the W ’s decaying to two leptons
and two neutrinos. A process with WW final state could also be misinterpreted if a third lepton
came from the initial- or final state radiation.
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Backgrounds with one lepton from the hard process. AW produced with jets can be misiden-
tified if two of the jets are falsely detected as leptons.

Backgrounds with no leptons from the hard process. Dijets are part of the large background
from QCD.

4.2.2 Datasets and Monte Carlo samples

The data set selected for analysis in the project is taken with the ATLAS detector at LHC in 2012 at√
s = 8 TeV and an integrated luminosity of

∫
Ldt = 20.28 fb−1.

The Monte Carlo samples of WZ events used for comparison with data and to test the event
selection, are officially produced ATLAS Monte Carlo samples. There are two sets of MC samples. A
set of Standard Model WZ events generated using the Sherpa event generator [8] and another set with
WZ simulated to include TGCs generated using the MC@NLO event generator [9]. Both sets are for
2012 at

√
s = 8 TeV. Sets of MC samples for the backgrounds of ZZ, tt̄, Z + jets and WW are also

used as described before. MC samples with the backgrounds W + jets and Dijets were not used.
Both the data files and the MC files are ROOT files in the Derived Physics Data Detail-3 (D3PD)

data format, a standard ROOT tree data structure, widely used by physics groups in the ATLAS
collaboration. The data format allows for fast computation times and provides information on electrons,
muons, taus, jets, missing transverse energy �ET , track parameters and truth (if the D3PD file contains
simulated events). A standard set of variables is saved in a tree called ”physics” within the D3PD file,
where each entry in the tree corresponds to one selected event.

4.2.3 Pileup reweighting

There may be a discrepancy between the event pileup (multiple proton-proton collisions in a collision
of one bunch) of the Monte Carlo samples and that of the data samples. This happens if the event
pileup has not been simulated correctly in the event generation. This discrepancy must be accounted
for and this is done with pileup reweighting. The reweighting of Monte Carlo samples to the pileup
conditions of the data samples is done with the ATLAS tool for pileup reweighting. This is one of the
tools used with the program CycleSequencer.

4.2.4 Preselection

The event preselection ensures at first that the detector is in a condition so that the event is sensible
and that the event itself fulfills some set minimum requirements so it is fit for further investigation.
These are:

Good-Runs-List. The first requirement is that the event is in a so-called Good-Runs-List (GRL);
a run list prepared by the ATLAS data quality group. If the event is in the GRL it is deemed
valid for analysis. The GRL is one of the tools used by CycleSequencer.

ATLAS Liquid Argon (LAr) calorimeter error. The Liquid Argon (LAr) sampling calorimeter
is a key detector component in the ATLAS experiment and during a larger part of the time
taking data, the LAr calorimeter was affected by a failure. This resulted in the need to cut out
events within the affected region of measurements.

Number of tracks at primary vertex. The primary vertex must have at least two reconstructed
tracks associated with it. By primary vertex we mean the reconstructed vertex with the highest
track multiplicity.
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The second part of the preselection process happens when the event passes the first part. Here the
physical objects are subjected to a series of cuts. Both electrons and muons must originate from the
primary vertex. The missing transverse energy �ET used in project is MET_RefFinal, and here it is
required that �ET > 20 GeV. For all leptons we require that:

∆R =
√

∆η2 + ∆φ2 < 0.2 (36)

which is a derived quantity for describing a 2-dimensional radial distance between two points in the
detector. The preselection criteria for the physical objects are:

Muons. The reconstructed muons are required to have |η| < 2.4 and pT > 20 GeV.

Electrons. The reconstructed electrons are required to have |η| < 2.47 and pT > 20 GeV.

Neutrinos. The neutrino in the final state from the W is not directly observable, but is seen indirectly
through missing transverse energy �ET . For this study we have assumed that the transverse energy
of the neutrino is the same as the missing transverse energy (EνT = �ET ) hence ignoring other
effects that may contribute to the missing energy. If the critera �ET > 20 GeV is fulfilled, we
determine the z component of the neutrinos four-momentum, pνz. This is done by solving the
second order polynomial:

(k22 − k21)p2νz + 2k3k2pνz − (k21E
2
νT + k23) = 0 (37)

with
k1 = 2Eµ, k2 = 2pµz, k3 = M2

W −m2
µ + 2pµT pνT (38)

and where pνz is the only unknown quantity. This polynomial is solvable and will give two, one or
zero real solutions. For one solution the choice is easy. For zero solutions, we set the discriminant
to zero, solve forMW and update k3 to include this new value and we will be able to find one real
solution. For two solutions it would be correct to use both solutions and weight them 1/2 so we
are unbiased. For this study however we have done the same as for the zero solution case and in
all cases will have just one solution for pνz. For a more thorough description of this calculation,
see ref. [4].

Before being able to form the WZ pair, the event must fulfill some reconstruction requirements for
each boson:

Z reconstruction. A pair of leptons that are candidates for being identified as the decay products of a
Z boson, needs to satisfy the following requirements: (1) they must have opposite electric charge,
(2) they must have the same flavor and (3) their combined invariant mass must be compatible
with the mass of the Z, i.e. lie within a range of ±20 GeV of the Z mass (mZ = 91.1876 GeV).

W reconstruction. The reconstruction of the W boson happens from the remaining lepton after the
Z reconstruction, which is combined with the missing transverse energy �ET of the event.

When the electrons, muons and missing transverse energy �ET are extracted from the event, and the
reconstruction requirements are fulfilled, it is then possible to combine it into a WZ pair.
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Cut Data SM W±Z W±Z TGC 1 W±Z TGC 2
Event cleaning 33554445± 5793 205221± 126 60399± 64 60291± 64
Three leptons 4040± 67 2376± 13.5 9413± 25 8843± 24

�ET > 20 GeV 3058± 55 2090± 12.6 8480± 24 7852± 23

Z cut (Total) 2598± 51 1998± 12.4 8405± 24 7776± 23

Cut ZZ tt̄ Z+jets WW

Event cleaning 175984± 90.3 102667± 229 55365387± 10957 60± 1.6
Three leptons 1001± 6.8 62± 5.6 932± 45 2.3± 0.3

�ET > 20 GeV 540± 5 59± 5.5 531± 34 2.2± 0.3

Z cut (Total) 422± 4.4 24.3± 3.5 403± 29.6 0.9± 0.2

Table 2: A summary of the cut flow efficiency for the data samples and the Monte Carlo samples.
ZZ, tt̄, Z+jets and WW constitute the background MC samples. TGC 1 refers to the MC WZ sample
simulated with ∆g1Z = 0.1, ∆κZ = 0.6 and λZ = 0.05, while TGC 2 refers to the ∆g1Z = 0, ∆κZ = 0
and λZ = 0.05 sample. Total events after cuts is 2598± 51 for data and 2848± 32.6 for SM WZ and
background MC samples.

(Z) [MeV]
T

p
0 50 100 150 200 250 300 350 400

3
10×

E
v
e

n
ts

0

100

200

300

400

500

600

700

800
ATLAS Data

SM WZ

WW Background

ZZ Background

ttbar Background

Z + Jets Background

(Z) distribution (SM)
T

p

(a) Standard Model WZ MC sample.
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(b) WZ MC samples with aTGCs included.

Figure 5: The pT (Z) distribution of all Monte Carlo simulations combined and compared with ATLAS
data after the cut based selection. Most of the background is almost excluded, apart from the ZZ and
Z+jets background. In (b) MC samples simulated to include TGCs by the event generator are shown.
Red is for ∆g1Z = 0.1, ∆κZ = 0.6 and λZ = 0.05, and cyan is for ∆g1Z = 0, ∆κZ = 0 and λZ = 0.05.
Notice that the histograms are not stacked but plotted individually.

The performance of the event selection is seen in table 2. It is clear that almost all of the background
is removed in the event selection and that the WZ dominates the final states. This is expected as this
is the only process that will produce three leptons. In figure 5, the variable pT (Z) is shown after the
cut based selection for both the Monte Carlo samples and data. In figure 6, the distribution of the
invariant mass of the Z, Minv(Z), is shown and in figure 7 the transverse mass of the W, MT (W ), is
shown. A large boost in the MC samples with TGCs can be seen. This is due to the fact that the
values selected for the parameters, the sample was simulated with, are quite large.
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Figure 6: The invariant mass of the Z,Minv(Z), distribution of all Monte Carlo simulations combined
and compared with ATLAS data after cuts. The peak is around 91 GeV as expected for the Z boson.
In (b) MC samples simulated to include TGCs by the event generator is shown. Red is for ∆g1Z = 0.1,
∆κZ = 0.6 and λZ = 0.05, and cyan is for ∆g1Z = 0, ∆κZ = 0 and λZ = 0.05. Notice that the
histograms are not stacked but plotted individually.
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(a) Standard Model WZ MC sample.
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Figure 7: The transverse mass of the W, MT (W ), distribution of all Monte Carlo simulations
combined and compared with ATLAS data after cuts. The transverse mass has been calculated with
MT (W ) =

√
2pT (lW )pT (νW )(1− cos(φ(lW )− φ(νW ))), from ref. [10]. The peak is situated around 80

GeV as expected for the W boson, with a large spread due to the use of missing transverse energy in
the calculation. In (b) MC samples simulated to include TGCs by the event generator is shown. Red is
for ∆g1Z = 0.1, ∆κZ = 0.6 and λZ = 0.05, and cyan is for ∆g1Z = 0, ∆κZ = 0 and λZ = 0.05. Notice
that the histograms are not stacked but plotted individually.

4.3 Observables

A lot of different distributions will be investigated to see the effects of the anomalous triple gauge
couplings. This makes it possible to determine which variables that are more sensitive to the anomalous
couplings.

18



Discussion

4.3.1 Optimal Observables

The usual method of measuring TGCs in high energy collisions has been a maximum likelihood fit of the
transverse momentum distribution of one of the gauge bosons, pT (V ), where V = {Z,W, γ}. There are
two reasons for this: (1) the pT (V ) distribution is very sensitive to anomalous TGCs as the distribution
is sensitive to both angular and energy information, and (2) the pT (V ) distribution is reconstructible
without any assumptions or ambiguities. However, other statistical methods for deriving anomalous
TGC measurements and confidence intervals exist, one of which is the method of Optimal Observable
(OO). Some kinematic observables are more sensitive to anomalous TGCs than others and optimal
observables are quantities with maximal sensitivity to the unknown coupling parameters. The method
of Optimal Observables (OO) projects onto a single variable the kinematic information which is most
sensitive to a particular anomalous TGC parameter. Each anomalous TGC has its own OO value. The
OO value for a given λ coupling parameter of a particular event is given by:

OO(λ) = lim
ελ→0

(
dσ(SM + ελ)− dσ(SM)

ελdσ(SM)

)
(39)

where dσ is the differential cross-section for the event [11]. The OO value for a given coupling parameter
is essentially the ratio between the coefficient of the linear term (from equation 35) for the coupling
parameter and the coefficient for the SM. For the three couplings this will be

OO(∆gZ1 ) =
F1

F0
, OO(∆κZ) =

F2

F0
, OO(λZ) =

F3

F0
(40)

for every event. Here the F coefficients come from equation 35 and we have F0 = dσSM .
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(a) OO for ∆gZ1 .

)Zκ ∆OO(
2 1.5 1 0.5 0 0.5 1 1.5 2

E
v
e

n
ts

0

500

1000

1500

2000

2500

3000

Data

SM WZ

WZ with TGC: 0.1, 0.6, 0.05

WZ with TGC: 0, 0, 0.05

WW Background

ZZ Background

ttbar Background

Z+jets Background

Zκ ∆Optimal Observables for 

(b) OO for ∆κZ .

Figure 8: Optimal Observables for data compared with the MC samples. Notice that these histograms
are not stacked but plotted individually.

5 Discussion

In table 2 the cut flow efficiencies are shown, where total events after cuts is 2598 ± 51 for data and
2848±32.6 for SM WZ and background MC samples. The errors listed are statistical errors. Inclusion
of systematic errors are necessary as well. The calculation of the cross-section used in the determi-
nation of the weight, includes a theoretical error in the range of 5-10%. In addition, the luminosity,
which also appears in the calculation of the weights, includes an experimental error of around 3%.
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Figure 9: Optimal Observable for λZ . Plotted for
data compared with the MC samples. Notice that
these histograms are not stacked but plotted individ-
ually.

In figure 8(a), 8(b), and 9 the Optimal Observ-
ables for the three anomalous coupling parame-
ters are plotted for data compared with the MC
samples. The effect non-standard couplings have
on the OO distributions is clearly shown, as the
OO for the MC samples simulated to include
TGCs show strong sensitivity to the couplings
(the green and red lines). The OO(∆gZ1 ) dis-
tribution appears to be the least sensitive to the
anomalous TGCs. The anomalous TGC parame-
ters employed for the MC samples with simulated
TGCs have been chosen so that the effect of the
non-SM couplings are clearly visible, as is appar-
ent on the figures. Data, however, seems to be
very close to SM WZ with background. A com-
parison between the observables from figure 5, 6
and 7 among others and the Optimal Observables
can be made, to determine which of the observables are the most sensitive to the anomalous TGCs. To
find the observables that are the most sensitive to the anomalous couplings, we can use the total signif-
icance, which is a measure of the signal-to-background ratio: Significance = S√

S+B
, where the signal S

are WZ events with TGCs and the background B is as described in section 4.2.1. This makes it possible
to qualitively see the difference between the SM and the distributions with anomalous TGCs. The
couplings can be determined from the mean values of the Optimal Observables, 〈OO〉. A comparison
of the mean values of the Optimal Observables values for the simulated TGC MC samples with the
SM MC sample to see which sample correlates the most with the mean value of the OO value for data.
A χ2 test can be performed to compare mean of OO values with data, χ2 = (〈OO〉data−〈OO〉)2

σ2
OO,data

, where

the smallest χ2 value indicates the best fit [12]. A deriviation of confidence limits from the Optimal
Observables is possible. Confidence limits can be calculated for the anomalous TGCs by using a binned
maximum likelihood fit to the OO distributions (see ref. [11]).

6 Conclusion

In this project the effects of the anomalous triple gauge boson couplings for theWWZ vertex withWZ
final state have been investigated. By the use of the effective Lagrangian method, it has been possible
to include the three non-SM couplings ∆gZ1 , ∆κZ and λZ . In the Standard Model (SM) the three
parameters are zero. As seen on the histograms (figure 5, 6 and 7) and on the cutflow efficiency table
(table 2) the ZZ and Z + jets are the dominating background processes. But a mostly clean signal of
WZ events was still obtained through appropriate selection cuts, of which the criteria of exactly three
leptons was the one that made the largest cut in the data and MC samples. This was expected as
WZ is the only process that will produce three leptons. It is found that the Optimal Observables for
the three anomalous triple gauge couplings show strong sensitivity to the anomalous couplings. The
OO(∆gZ1 ) appeared to be the least sensitive to the anoumalous parameters. Data, however, appears
to closely favor a Standard Model without aTGCs, but the parameters for the MC samples simulated
with TGCs were chosen to show a strong effect on observables. The method of Optimal Observables
seem promising as competition to the commonly used pT (V ) distribution. The LHC is scheduled to
start again in 2015 with a collision energy of

√
s = 14 TeV. A larger collision energy would improve

the ability to set limits on the TGC parameters and will open up a new, unexplored area, making the
possibility to find New Physics (NP) in the near future look very promising.
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Appendix

A Appendix

A.1 Information on the Monte Carlo samples used

This appendix contains more detailed information on the Monte Carlo samples used for this study.

MCID Process Generator k-factor ∆g1Z ∆κZ λZ Scale to 1fb−1

129960-129977 WZ MC@NLO 1.050 0.1 0.6 0.05 0.00334
129978-129995 WZ MC@NLO 1.050 0 0 0.05 0.00334

Table 3: MC samples to model the signal, WZ. These samples are simulated to include TGCs.

MCID Process Generator k-factor Scale to 1fb−1

126893 WZ Sherpa 1.050 0.0037920

Table 4: MC sample to model the signal, WZ, from the Standard Model.

MCID Process Generator k-factor Scale to 1fb−1

126894 ZZ Sherpa 1.000 0.0022994
110001 tt̄ MC@NLO and Jimmy 1.218 0.0253306

117650-117655 ZeeNp0-ZeeNp5 Alpgen and Pythia 1.000 0.1075531
117660-117665 ZµµNp0-ZµµNp5 Alpgen and Pythia 1.000 0.1075531
117670-117675 ZττNp0-ZττNp5 Alpgen and Pythia 1.000 0.1075531

126892 WW Sherpa 1.050 0.0021385

Table 5: MC samples to model the background, ZZ, tt̄, Z + jets and WW .

The k-factor is the ratio of the NLO cross-section to the LO cross-section, used for reweighting of MC
samples where a full NLO calculation would have been too CPU intensive.

In table 3, the scaling factors differed depending on the process that was simulated (W+Z → lνll
or W−Z → lνll). However for this study the samples for the processes were combined in one and
hence, one scalefactor for both were needed. This was calculated by weigthing the scalefactor for each
process with the fraction of the corresponding cross-section (as the number of generated event were
the same for both). The sum of the two weighted scalefactors is the quoted number in the table. The
combination of the processes will introduce a small and non-significant error in the final result.

Zee, Zµµ and Zττ refer to Z+jets, and NpX, where X = 0 . . . 5 refers to the number of additional
partons in the final state. Each set with a different value of X had a different scaling coefficient (last
column), but in the analysis the scale factor for the Np0 set was used for all of them as the difference
was too small to be significant. This would introduce a small and nonsignificant error in the final
results. The listed value for the scale to 1fb−1 for the Z+jets rows is therefore the value for the Np0
set which was the used value.
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